If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+9=27
We move all terms to the left:
2y^2+9-(27)=0
We add all the numbers together, and all the variables
2y^2-18=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| 1+3k=14 | | -1-3k=14 | | 5y^2+3y-4=0 | | x+5^2=4 | | 1/9c=16 | | x(1/2)=10 | | 2g+6-14g=-6(g-5) | | (4x+4)^2=11 | | 30w=75 | | (18y+4)+(-10y-2)=NY+2 | | 103=-7(x+8)+7(x+7) | | (18y+4)+(10y-2)=NY+2 | | 12(x-4)=4 | | 3x–(2(x+5)–4)=7x | | (x+6)^2-3(x+6)-10=0 | | 8(x+3)=-9 | | v-9=27 | | (-8y+10)+(6y+2)=NY+12 | | -2+2/3x=8 | | a=1/2(23+14)(28) | | a=1/2(23+12)(28) | | 42x^2=9 | | 30(x-2)-5(4-x)=40(x-7)+19 | | 3x-7=5(6-x) | | f–10=-4 | | 3/7*x+4=16 | | (3x+3)^2-18x-45=0 | | (3x+3)^2+18x-45=0 | | 4a^2=8a-5=0 | | -4x(2x)=54 | | 6-7a-3a=0 | | 3/5t=10 |